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Naïve Bayes classifier
To predict class value for a set of attribute values (evidences) -

for each class value Ai compute and compare: 

• Naïve – because it assumes conditional independence of 
variables

• Although based on assumptions that are almost never correct, 
this scheme works well in practice!



Naïve Bayes as a graph (network)
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This graph states that there is a probabilistic dependence between C 
and each Ei. The probability of one of these variables (Class to predict) 
is influenced by the probabilities of the rest of the variables (set of 
evidences) and vice versa: P(C|E) ≠ P(C), and P(E|C) ≠ P(E)



Multi-evidence classifier 
for Weather dataset

Play
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Event to predict (hidden)

Set of evidences (demonstrate themselves)



Naïve Bayes: issues 

1. Prior probabilities may change

2. Zero frequency problem

3. Missing values

4. Numeric attributes



PRIOR PROBABILITIES

Issue 1



Diagnostics with Naïve Bayes
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Disease to predict (hidden)

Set of effects (demonstrate themselves)



Example: diagnosing meningitis

• A doctor knows that 50% of patients with meningitis presented 
with a stiff neck syndrome.

• The doctor also knows some unconditional facts (prior 
probabilities): 

the prior probability that any patient has meningitis is 
1/50,000

the probability that he does not have a meningitis is 
49,999/50,000



Diagnostic problem
P(StiffNeck=true | Meningitis=true) = 0.5

P(StiffNeck=true | Meningitis=false) = 0.5

P(Meningitis=true) = 1/50000

P(Meningitis=false) = 49999/50000

P(Meningitis=true | StiffNeck=true) 

= P(StiffNeck=true | Meningitis=true) P(Meningitis=true) / 

P(StiffNeck=true) 

= (0.5) x (1/50000) / P(StiffNeck=true) =0.5 * 0.00002 / P(StiffNeck=true) =
0.00010 / P(StiffNeck=true)

P(Meningitis=false | StiffNeck=true) 

= P(StiffNeck=true | Meningitis=false) P(Meningitis=false) / 

P(StiffNeck=true)

= (0.5)*(49999/50000)/ P(StiffNeck=true)  = 0.49999 / P(StiffNeck=true) 

~1/5000 chance that the patient with a stiff neck has meningitis (due to the very 
low prior probability)



Bayes’ rule critics: 
prior probabilities

• The doctor has the above quantitative information in the diagnostic 
direction from symptoms (evidences, effects) to causes.

• The problem is that prior probabilities are hard to estimate and they 
may fluctuate. 

• Imagine, there is a sudden epidemic of meningitis. The prior probability, 
P(Meningitis=true), will go up.

• Clearly, P(StiffNeck=true|Meningitis=true) is unaffected by the 
epidemic. It simply reflects the way meningitis works.

• The estimation of P(Meningitis=true|StiffNeck=true) will be incorrect 
until new data about P(Meningitis=true) are collected



ZERO FREQUENCY

Issue 2



The “zero-frequency problem”

• What if an attribute value doesn’t occur with every class value 
(e.g. “Humidity = High” for class “Play=Yes”)?

– Probability P(Humidity=High|play=yes) will be zero.

• P(Play=“Yes”|E) will also be zero! 

– No matter how likely the other values are!

• Remedy – Laplace correction: 

– Add 1 to the count for every attribute value-class 
combination (Laplace estimator)

– Add k (# of possible attribute values) to the denominator. 



Laplace correction: example
Outlook Play Count

Sunny No 0

Sunny Yes 6

Overcast No 2 

Overcast Yes 2

Rainy No 3

Rainy Yes 1

Outlook Play Count

Sunny No 1

Sunny Yes 7

Overcast No 3

Overcast Yes 3

Rainy No 4

Rainy Yes 2

+1 

It was:  out of total 5 ‘No’

0 – Sunny, 2 – Overcast, 3 – Rainy

The probabilities were:

P(Sunny | no)= 0/5;  P(Overcast|no) = 2/5;  P(Rainy|no)= 3/5

After correction:

1 – Sunny, 3 – Overcast, 4 – Rainy: Total ‘No’: 5+3=8 

(hence add the cardinality of the attribute to the denominator)



Laplace correction
Outlook Play Count

Sunny No 0

Sunny Yes 6

Overcast No 2 

Overcast Yes 2

Rainy No 3

Rainy Yes 1

Outlook Play Count

Sunny No 1

Sunny Yes 7

Overcast No 3

Overcast Yes 3

Rainy No 4

Rainy Yes 2

+1 

After correction the probabilities:

P(Sunny | no)= 1/(5+3);  

P(Overcast|no) = 3/(5+3);  

P(Rainy|no)= 4/(5+3)

Needs to sum up to 1.0

You add this correction to all counts, for both classes



Laplace correction example
P( yes | E) = 

P( Outlook=Sunny | yes) *

P( Temp=Cool | yes) *

P( Humidity=High | yes) *

P( Windy=True | yes) *

P( yes ) / P(E) = 

= (2/9) * (3/9) * (3/9) * (3/9) *(9/14) / P(E) = 0.0053 / P(E)

With Laplace correction:

= ((2+1)/(9+3)) * ((3+1)/(9+3)) * ((3+1)/(9+2)) * ((3+1)/(9+2)) *(9/14) / P(E) 
= 0.007 / P(E)

Number of possible 

values for ‘Outlook’

Number of possible 

values for ‘Windy’



MISSING VALUES

Issue 3



Missing values: in the training set
• Missing values - not a problem for Naïve Bayes

• Suppose that one value for outlook in the training set is missing. 
We count only existing values. For a large dataset, the 
probability P(outlook=sunny|yes) and P(outlook=sunny|no) will 
not change much. This is because we use odds ratio rather than 
absolute counts.



Missing values: in the query
• The same calculation without one fraction

P(yes | E) = 

P(Temp=Cool | yes) *

P(Humidity=High | yes) *

P(Windy=True | yes) *

P(yes) / P(E) = 

= (3/9) * (3/9) * (3/9) *(9/14) / P(E) = 
0.0238 / P(E)

P(no | E) = 

P(Temp=Cool | no) *

P(Humidity=High | no) *

P(Windy=True | no) *

P(play=no) / P(E) = 

= (1/5) * (4/5) * (3/5) *(5/14) / P(E) = 
0.0343 / P(E)



Missing values: in the query
• With missing value:

P(yes | E) = 0.0238 / P(E) P(no | E) = 0.0343 / P(E)

• Without missing value:

P( yes | E) = 0.0053 / P(E) P( no | E) = 0.0206 / P(E)

The numbers are much higher for the case of missing values. But we care only 

about the ratio of yes and no. 



Missing values: in the query
• With missing value:

P(yes | E) = 0.0238 / P(E) P(no | E) = 0.0343 / P(E)

After normalization: P(yes | E) = 41%,     P(no | E) = 59%

• Without missing value:

P( yes | E) = 0.0053 / P(E) P( no | E) = 0.0206 / P(E)

After normalization: P(yes | E) = 21%,     P(no | E) = 79%

Of course, this is a very small dataset where each count matters, but the 

prediction is still the same: most probably – no play



NUMERIC ATTRIBUTES

Issue 4



Normal distribution
• Usual assumption: numerical values have a normal or 

Gaussian probability distribution.

counts

numeric values



Two classes have different distributions
• Class A is normally distributed around its mean with its standard 

deviation. 
• Class B is normally distributed around the different mean and with a 

different std

Class B

numeric values

counts

E

Class A



Probability density function
• Probability density function (PDF) for the normal distribution:

For a given x – evaluates the probability of [x-𝜺,x+𝜺] according to

the distribution of probabilities in a given class



Probability and density
• Relationship between probability and density:

• But: to compare posteriori probabilities it is enough to 

calculate PDF, because ε cancels out

• Exact relationship:



To compute probability P(X=V|class)

• Gives ≈ probability of X=V of belonging to class A:

• We approximate μ by the sample mean:

• We approximate σ 2 by the sample variance:



Numeric weather data example

~µ (mean) = 
(83+70+68+64+69+75+75+72+81)/ 9 = 73

~σ2 (variance) = ( (83-73)^2 + (70-73)^2 + 
(68-73)^2 + (64-73)^2 + (69-73)^2 + (75-
73)^2 + (75-73)^2 + (72-73)^2 + (81-
73)^2 )/ (9-1) = 38

Compute the probability of 
temp=66 for class Yes:

Substitute x=66:

P(temp=66|yes)=0.034
Density function for temp in class Yes



Numeric weather data example

~µ (mean) = 
(86+96+80+65+70+80+70+90+75)/ 9 = 79 

~σ2 (variance) = ( (86-79)^2 + (96-79)^2 + 
(80-79)^2 + (65-79)^2 + (70-79)^2 + (80-
79)^2 + (70-79)^2 + (90-79)^2 + (75-
79)^2 )/ (9-1) = 104

Compute the probability of 
Humidity=90 for class Yes:

Substitute x=90:

P(humidity=90|yes)=0.022
Density function for humidity in class Yes



Classifying a new day
• A new day E:

P(play=yes | E) = 

P(Outlook=Sunny | play=yes) *

P(Temp=66 | play=yes) *

P(Humidity=90 | play=yes) *

P(Windy=True | play=yes) *

P(play=yes) / P(E) = 

= (2/9) * (0.034) * (0.022) * (3/9) 

*(9/14) / P(E) = 0.000036 / 

P(E)

P(play=no | E) = 

P(Outlook=Sunny | play=no) *

P(Temp=66 | play=no) *

P(Humidity=90 | play=no) *

P(Windy=True | play=no) *

P(play=no) / P(E) = 

= (3/5) * (0.0291) * (0.038) * (3/5) 

*(5/14) / P(E) = 0.000136 / 

P(E)

After normalization: P(play=yes | E) = 20.9%,     P(play=no | E) = 79.1%



Exercise: Tax Data – Naive Bayes
Classify: (_, No, Married, 95K, ?)

(Apply also the Laplace normalization)



Exercise: Tax Data – Naive Bayes
Classify: (_, No, Married, 95K, ?)

(Apply also the Laplace normalization)



Tax Data – Naive Bayes
Classify: (_, No, Married, 95K, ?)

P(Yes) = 3/10 = 0.3

P(Refund=No|Yes) = (3+1)/(3+2) = 0.8

P(Status=Married|Yes) = (0+1)/(3+3) = 0.17 

Approximate μ with: (95+85+90)/3 =90

Approximate σ2 with: 

( (95-90)^2+(85-90) ^2+(90-90) ^2 )/   
(3-1) = 25

f(income=95|Yes) = 

e(- ( (95-90)^2 / (2*25)) ) / 
sqrt(2*3.14*25) = .048

P(Yes | E) = α*.8*.17*.048*.3= 
α*.0019584



Tax Data
Classify: (_, No, Married, 95K, ?)

P(No) = 7/10 = .7

P(Refund=No|No) = (4+1)/(7+2) = .556

P(Status=Married|No) = (4+1)/(7+3) = .5  

Approximate μ with: 

(125+100+70+120+60+220+75)/7 =110

Approximate σ2 with: 

((125-110)^2 + (100-110)^2 + (70-
110)^2 + (120-110)^2 + (60-110)^2 + 
(220-110)^2 + (75-110)^2 )/(7-1) = 
2975

f(income=95|No) = 

e( -((95-110)^2 / (2*2975)) ) 
/sqrt(2*3.14* 2975) = .00704

P(No | E) = α*.556*.5* .00704*0.7= 
α*.00137



Tax Data
Classify: (_, No, Married, 95K, ?)

P(Yes | E) = α*.0019584

P(No | E) = α*.00137

α = 1/(.0019584 + .00137)=300.44

P(Yes|E) = 300.44 *.0019584 = 0.59

P(No|E) = 300.44 *.00137 = 0.41

We predict “Yes.”



Summary 
• Naïve Bayes works surprisingly well (even when independence 

assumption is clearly violated)

• Because classification doesn’t require accurate probability 
estimates as long as maximum probability is assigned to the 
correct class



Applications of Naïve Bayes

The best classifier for:

• Document classification (filtering)

• Diagnostics

• Clinical trials

• Assessing risks



Text Categorization

• Text categorization is the task of assigning a given document to 
one of a fixed set of categories, on the basis of the words it 
contains. 

• The class is the document category, and the evidence variables 
are the presence or absence of each word in the document.



Text Categorization
• The model consists of the prior probability P(Category) and the 

conditional probabilities P(Wordi | Category).

• For each category c, P(Category=c) is estimated as the fraction of 
all the “training” documents that are of that category.

• Similarly, P(Wordi = true | Category = c) is estimated as the 
fraction of documents of category c that contain this word.

• Also, P(Wordi = true | Category = ¬c) is estimated as the fraction 
of documents not of category c that contain this word.



Text Categorization (cont’d)
• Now we can use naïve Bayes for classifying a new document 

with n words:

P(Category = c | Word1 = true, …, Wordn = true) = 

α*P(Category = c)∏n
i=1 P(Wordi = true | Category = c)

P(Category = ¬c | Word1 = true, …, Wordn = true) = 

α*P(Category = ¬c)∏n
i=1 P(Wordi = true | Category = ¬c)

Word1, …, Wordn are the words occurring in the new document

α is the normalization constant. 

• Observe that similarly with the “missing values” the new 
document doesn’t contain every word for which we computed 
the probabilities.


